Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190369, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862805

RESUMO

The iconic picture of Arctic marine ecosystems shows an intense pulse of biological productivity around the spring bloom that is sustained while fresh organic matter (OM) is available, after which ecosystem activity declines to basal levels in autumn and winter. We investigated seasonality in benthic biogeochemical cycling at three stations in a high Arctic fjord that has recently lost much of its seasonal ice-cover. Unlike observations from other Arctic locations, we find little seasonality in sediment community respiration and bioturbation rates, although different sediment reworking modes varied through the year. Nutrient fluxes did vary, suggesting that, although OM was processed at similar rates, seasonality in its quality led to spring/summer peaks in inorganic nitrogen and silicate fluxes. These patterns correspond to published information on seasonality in vertical flux at the stations. Largely ice-free Kongsfjorden has a considerable detrital pool in soft sediments which sustain benthic communities over the year. Sources of this include macroalgae and terrestrial runoff. Climate change leading to less ice cover, higher light availability and expanded benthic habitat may lead to more detrital carbon in the system, dampening the quantitative importance of seasonal pulses of phytodetritus to seafloor communities in some areas of the Arctic. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Difusão , Sedimentos Geológicos/química , Camada de Gelo/química , Noruega , Oceanos e Mares , Compostos Orgânicos/análise , Oxigênio/análise , Estações do Ano , Água do Mar/química , Análise Espaço-Temporal
2.
Biochimie ; 167: 106-118, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545993

RESUMO

Microalgae are photosynthetic microorganisms that produce numerous bioactive molecules that can be used as food supplement to prevent chronic disease installation. Indeed, they produce phycobiliproteins, polysaccharides, lipids, carotenoids and sterolic compounds. The use of microalgae in human nutrition provide a mixture of these molecules with synergistic effect. The aim of this review is to present the specific roles played by the xanthophylls, and specifically astaxanthin and fucoxanthin, two high added value carotenoids, and by microalgal phytosterols such as ß-sitosterol, campesterol and stigmasterol on several cell mechanisms involved in the prevention of cardiometabolic diseases and cancers. This review explains how these microalgal molecules modulate cell signaling pathways involved in carbohydrate and lipid metabolisms, inflammation, apoptosis, invasion and metastasis. Xanthophylls and phytosterols are involved in the reduction of inflammatory markers in relation with the regulation of the c-Jun N-terminal kinases and nuclear factor-kappa B signaling pathways, and suppression of production of pro-inflammatory mediators. Xanthophylls act on glucose and lipid metabolisms via both the upregulation of peroxisome proliferator-activated receptors (PPARs) and glucose transporters and its effects on the expression of enzymes involved in fatty acid synthesis and cholesterol metabolism. Their anti-cancer effects are related to the induction of intrinsic apoptosis due to down-regulation of key regulatory kinases. The anti-angiogenesis, anti-proliferative and anti-invasive effects are correlated with decreased production of endothelial growth factors and of matrix metalloproteinases. Phytosterols have a major role on cholesterol absorption via modification of the activities of Niemann-Pick C1 like 1 and ATP-binding cassette transporters and on cholesterol esterification. Their action are also related with the modulation of PPARs and sterol regulatory element-binding protein-1 activities.


Assuntos
Colesterol/análogos & derivados , Fitosteróis/farmacologia , Sitosteroides/farmacologia , Xantofilas/farmacologia , Apoptose/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Doenças Cardiovasculares/prevenção & controle , Colesterol/farmacologia , Suplementos Nutricionais , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle , Microalgas/metabolismo , Neoplasias/prevenção & controle , Transdução de Sinais
3.
Environ Pollut ; 255(Pt 1): 113171, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31539851

RESUMO

Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.


Assuntos
Células Endoteliais/metabolismo , Poluentes Ambientais/toxicidade , Vesículas Extracelulares/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Urina/química , Animais , Biomarcadores/metabolismo , Líquidos Corporais/química , Linhagem Celular , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Exossomos , Feminino , Humanos , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...